skip to main content


Search for: All records

Creators/Authors contains: "Echlin, McLean P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 26, 2025
  2. Free, publicly-accessible full text available July 27, 2024
  3. Abstract

    In computer vision, single-image super-resolution (SISR) has been extensively explored using convolutional neural networks (CNNs) on optical images, but images outside this domain, such as those from scientific experiments, are not well investigated. Experimental data is often gathered using non-optical methods, which alters the metrics for image quality. One such example is electron backscatter diffraction (EBSD), a materials characterization technique that maps crystal arrangement in solid materials, which provides insight into processing, structure, and property relationships. We present a broadly adaptable approach for applying state-of-art SISR networks to generate super-resolved EBSD orientation maps. This approach includes quaternion-based orientation recognition, loss functions that consider rotational effects and crystallographic symmetry, and an inference pipeline to convert network output into established visualization formats for EBSD maps. The ability to generate physically accurate, high-resolution EBSD maps with super-resolution enables high-throughput characterization and broadens the capture capabilities for three-dimensional experimental EBSD datasets.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Accelerating the design and development of new advanced materials is one of the priorities in modern materials science. These efforts are critically dependent on the development of comprehensive materials cyberinfrastructures which enable efficient data storage, management, sharing, and collaboration as well as integration of computational tools that help establish processing–structure–property relationships. In this contribution, we present implementation of such computational tools into a cloud-based platform called BisQue (Kvilekval et al., Bioinformatics 26(4):554, 2010). We first describe the current state of BisQue as an open-source platform for multidisciplinary research in the cloud and its potential for 3D materials science. We then demonstrate how new computational tools, primarily aimed at processing–structure–property relationships, can be implemented into the system. Specifically, in this work, we develop a module for BisQue that enables microstructure-sensitive predictions of effective yield strength of two-phase materials. Towards this end, we present an implementation of a computationally efficient data-driven model into the BisQue platform. The new module is made available online (web address:https://bisque.ece.ucsb.edu/module_service/Composite_Strength/) and can be used from a web browser without any special software and with minimal computational requirements on the user end. The capabilities of the module for rapid property screening are demonstrated in case studies with two different methodologies based on datasets containing 3D microstructure information from (i) synthetic generation and (ii) sampling large 3D volumes obtained in experiments.

     
    more » « less